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The enantioselective hydrogenation of olefins is one of the most Table 1. Hydrogenation of Fluorine-Containing Olefins?
powerful and studied transformations in asymmetric catalysis. The Hy (20-100 bar) .

Ry F. (
reaction is typically accomplished using complexes of chiral P,P- @_/{'; @_/2-“' Ir-catalyst (0.5-2 mol%) @_2‘“' . @_(-H'
or N,P-chelating ligands with metals like ruthenium and rhodium. R R T o R R

- .. CH,Cl, 40°C A B
In the past decade, iridium complexes have proven to be efficient
catalysts for the enantioselective hydrogenation of oléfifige Ri?;;“?iz%l Abs Cl;ggglegeyl Abs
iridium catalyst developed by Crabtree in 19%as modified by Entry  Substrate - Conv. ")\ 5" ) conf? €O AR (%) Conf”
Pfaltz in 1998 to give an iridium-phosphanodihydrooxazole (PHOX)
catalyst that could hydrogenate tri- and tetrasubstituted olefins with 1 _F 99 982 29 (R 0 - -
enantiomeric excesses (ee’s) up to 98%ince then, several other cookt
stereoselective iridium-based N,P-ligand catalysts have been re-
ported for the hydrogenation of a limited range of substrates. 2 — . 78 881287 (R 82 955 >99 (R)
Organofluorine compounds are increasing in popularity within °
the pharmaceutical industry, and a growing number of active . 99 946 80 (R 97 1000 99 (R
pharmaceutical products now contain fluorine, such as top selling =on ) ® ’ ®
antidepressants like Fluoxetine and ParoxetiRkiorine can alter
_the properties of a molecule significarfttyn_q “smuggli_ng fluo_rine 4 ng 21 100:0 57 2)5;);5‘ 30 53:47 rac -
into a lead structure enhances the probability of landing a hit almost OO (R.35)
10-fold.”® However, the synthetic methods available for introducing
a fluorine-containing stereocenter are still few, and most involve 5 __COCEt 25 100:0 74 - 25 70:30 rac -
. LS (25°,35")
asymmetric fluorination off-keto esters offi-keto phosphonatés. F
Methods for creatinga CHF-bearing stereocenter by asymmetric hydrog- (+)- -
enation are even rarétIn a recent patent, Nelson et al. reported ~ © —M 24 TI29 90 He3q 69 919 B2 03

on the asymmetric hydrogenation of cyclic vinylfluorides using Rh-
11

_V\_/glphos. We therefore wanted. to evaluate Qur nevyly (_jevelo_ped a General conditions: 0:52.0 mol % catalyst, room temp to 4C, dry

iridium catalysts in the asymmetric hydrogenation of vinylic fluorine  CH,Cl,, 20-100 bar H. Ratio and conversion were determinedByNMR.

compounds to explore the ability of these catalysts to create ° Details are given in the Supporting Information.

stereocenters bearing fluorine atoms. Surprisingly, the hydrogena-

t!on of fluorlne-contalnlng Ol_ef'ns has Only_ _been rgpo_rted a_few Scheme 1. The Plausible Defluorination/Hydrogenation and

times. The reason for this might be the ability of vinylic fluorine  Hydrogenation/Defluorination Routes to 4.

to be cleaved off? Herein, we report for the first time the successful

Q O/— Complex V
asymmetric hydrogenation with ee’s up to 99% of vinyl fluorides “2"°?"F§,';0‘12.325§2 h,
utilizing iridium-based catalysis (Table 1, entries 2 and 3). F X o

To develop this hydrogenation reaction, we first confronted the S O’/ 2 »-o
problem of hydrogenolysis. There are two plausible pathways for =

F N
the loss of fluorine (Scheme 1). One possibility is that the vinyl _)°
fluoride initially undergoes hydrogenation and the fluorine atom is 1 \ / 4
3

lost from the formed product. A second possibility is that the
fluorine atom is first lost from the fluorinated olefin, formirg
which is subsequently hydrogenated to compotinthe latter route

is the most probable, because the vinylic fluorine is more unstable o
than its saturated counterpart. thiazole complexV . However, the use of iridium complexes based

Hydrogenation of afE/Z mixture of esterl showsV5 removes on the azanorbornyl scaffold £l )°™ resulted in less defluori-
fluorine from the substrate efficiently. This is particularly pro- Nation. Complex gave the best results, concerning both the level
nounced ino,o,o-trifluorotoluene solution, with 62% defluorination ~ ©f defluorination and conversion. It was chosen for further
being observed. When the solvent was changed to,GGH evaluation with some trisubstituted substrates (Table 1). The ester
defluorination could be decreased to 40% (Chart 1, complex (entry 1) required high pressures (100 bar) and elevated tempera-
but the reaction proceeded slowly. We prepared the racemate of tures (40°C) to undergo hydrogenation, whereas the acetate (entry

Similar disappointing results were observed using the analogous

and subjected it to hydrogenation with compMxOnly 2 could 2) and the alcohol (entry 3) reacted more readily. The highest
be detected, indicating that the loss of fluorine, as expected, follows reaction rates and conversions were observed for the alcohol (entry
the latter proposed path shown in Scheme 1. 3). Full conversion was reached with 20 bat BL5 mol % catalyst,
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Chart 1. Overview of Conversions and C—F Bond Cleavage in We have shown that asymmetric hydrogenation of fluorinated
the Hydrogenations of 12 olefins with iridium complexes is possible, often with low catalyst
e e on e loadings and with low levels of defluorination. Further studies to
(o) ‘,°”‘°"/\ ol Ph\Pf’“ ) en? P/ /% ol prepare and evaluate other substrates, and to design complexes that
@i\/,\% @\/Iri% @\/‘"‘ are able to hydrogenate a broader range of fluorinated olefins, are
K Y T
O,H O,J‘( f:: ongoing in our group.

o
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